

Characteristics of Neutral Beam Generated by a Low Angle Reflection and Its Etch Characteristics by Halogen-Based Gases

Geun-Young Yeom

SungKyunKwan University

Problems of Current Etch Technology

- Scaling down of the device to nano-scale : increased volunability to processing damage
- Physical damage
- Electrical damage (Charging damage)

ITRS Roadmap Acceleration Continues...Half Pitch

◆ 2001 DRAM ½ Pitch □ 2001 MPU/ASIC ½ Pitch

1999 ITRS DRAM Half-

Pitch

2013

2016

ITRS Roadmap Acceleration Continues...Gate Length

1000

- DRAM Half-Pitch (nm)

Technology Node

100

10

1995

2-year Node Cvcle

1998

3-year Node Cyde

2001

2004

Year of Production

DRAM Half Pitch

2007

2010

Charging Effects

Trend of Etching Tools Development

Researtch Status of Neutral Beam Etching Technologies

 1) Gas dynamics or hyperthermal atomic beam (Heating of gas)
 - Caltech by Giapis in 2000 (laser), PSI Inc. in 2000 (laser), NEC by Nishiyama in 1995 (thermal heating), etc. Oklahoma Univ. in 2000 (hyperthermal)

 2) Ion-neutral scattering (charge exchange process)
 – Hitach by Mizutani in 1995 (ion removal by retarding grid), NTT by Matuso in 1995 (ion removal by magnetic field), etc.

3) Ion-electron recombination (surface neutralization)

- IBM by Chen in 1997 (sheath recombination by ion and electron)
- Tohoku University in 2002
- Ebara Research Co. in 1995 (capillary hole)
- Tokyo Univ. in 2000 (focused fast atom beam)

Neutral Beam Etching using Gas Dynamics

۲

Researtch Status of Neutral Beam Etching Technologies

1) Gas dynamics or hyperthermal atomic beam (Heating of gas)

- Caltech by Giapis in 2000 (laser), PSI Inc. in 2000 (laser),
- NEC by Nishiyama in 1995 (thermal heating), etc.
- Oklahoma Univ. in 2000 (hyperthermal)

2) Ion-neutral scattering (charge exchange process)

- Hitach by Mizutani in 1995 (ion removal by retarding grid),
- NTT by Matuso in 1995 (ion removal by magnetic field), etc.

3) Ion-electron recombination (surface neutralization)

- IBM by Chen in 1997 (sheath recombination by ion and electron)
- Tohoku University in 2002
- Ebara Research Co. in 1995 (capillary hole)
- Tokyo Univ. in 2000 (focused fast atom beam)

Neutral Beam Etching by Ion - Neutral Scattering

Researtch Status of Neutral Beam Etching Technologies

 1) Gas dynamics or hyperthermal atomic beam (Heating of gas)
 – Caltech by Giapis in 2000 (laser), PSI Inc. in 2000 (laser), NEC by Nishiyama in 1995 (thermal heating), etc. Oklahoma Univ. in 2000 (hyperthermal)

- 2) Ion-neutral scattering (charge exchange process)
 - Hitach by Mizutani in 1995 (ion removal by retarding grid),
 NTT by Matuso in 1995 (ion removal by magnetic field), etc.
- 3) Ion-electron recombination (surface neutralization)
 - IBM by Chen in 1997 (sheath recombination by ion and electron)
 - Tohoku University in 2002
 - Ebara Research Co. in 1995 (capillary hole)
 - Tokyo Univ. in 2000 (focused fast atom beam)

Neutral beam etching by Ion-Electron Recombination (I)

(Demetre J. Economou et.al, Houston Univ., 2000)

Generation of Directional Neutral Beam by Low Angle Reflection

• When the ion beam was reflected by a reflector at the angles lower than 15°, most of the ions reflected were neutralized and the lower reflector angle showed the higher degree of neutralization.

Experimental Low Angle Reflected Neutral Beam System

۲

Ion Flux and Neutral Flux as a function of Acceleration Voltage

SiO₂ Etch Rate as Functions of Acceleration Voltage and Gas Flow Rates for SF_6 , NF_3 , CF_4 , and Ar

Condition :

reflector angle: 5°, rf power: 500W SF₆ gas flow rate: 7 sccm Condition : reflector angle: 5°, rf power: 500W Va: 700V

SiO₂ and Si Etch Rate as a Function of SF₆ Gas Flow Rate

Condition : reflector angle: 5°, rf power: 400W, distance between reflector and sample : 4 cm, pure SF₆, Va: 400 V, Ve: -100 V

Etch Rate and Etch Selectivity as a Function of Gas Flow Rate Using the Neutral Beam Etching System

Condition : rf power: 300W , acceleration voltage: 400V, reflector angle: 5° reflector material: Si

Etch Rate and Etch Selectivity as a Function of H₂ to CF₄ **Using Neutral Beam Etching** System

Condition : rf power: 300W , CF₄+H₂: 15sccm, acceleration voltage: 400V, reflector material: metal, reflector angle: 5°

SEM Micrograph of SiO₂ Etch Profiles (Neutral Beam Etching)

Condition : SF₆ 2.5 sccm, rf power: 400 W, acceleration voltage: 400V, reflector angle: 5° etch mask : Cr

SEM Micrograph of Si Etch Profiles

Condition : CF₄ 15sccm, rf power: 300W, acceleration voltage: 400V, reflector material: metal, reflector angle: 5°

SPL 20.0kV 14.1mm x200k 11/5/04

200nm

Effect of Reflector Angle on Reflected Angle and Flux of the Neutrals

Condition : SF₆ 10 sccm(0.6 mTorr), rf power: 400W, acceleration voltage: 400V reflector material: Si

SKKU

20/32

Effect of Reflector Materials on Reflected Angle and Flux

Condition : SF₆ 10 sccm(0.6 mTorr), rf power: 400W, acceleration voltage: 400V reflector angle: 5°

C-V Characteristics Before and After Neutral Beam & ICP Etch

۲

SKKU

22/32

I–V Characteristics Before and After Neutral Beam & ICP Etch

Treatment

- ICP plasma power: 500 W, bias voltage: -100 V, gas: O₂ time: 2 min

- Neutral beam

power: 500 W, acceleration voltage: 400V, extraction voltage: -100V gas: O₂, time: 30 min, distance: 5 cm

<small dot: 100um x 100um>

SEM Micrograph of Poly-Si and Poly-Si/SiO₂ Etch Profiles (ICP) Etching)

\downarrow condition : rf power: 700W, Bias voltage: -75V pure SF₆ 5 mTorr,

(Poly-Si)

SEM Micrograph of Poly-Si and Poly-Si/SiO₂ Etch Profiles (Ion Beam Etching)

+ condition : SF₆ 2.5 sccm(0.3 mTorr), Ve: -100V, Va: 400V, etch mask: Cr

(Poly-Si)

rf power: 400W,

(Poly-Si/SiO₂)

SEM Micrograph of poly-Si and SiO₂ Etch Profiles (Neutral Beam Etching)

4 condition : reflector angle: 5°, SF₆ 2.5 sccm(0.3 mTorr), rf power: 400W, Ve: -100V, Va: 400V

۲

GaN and GaAs Etching as a Function of Flow rate, Additive Gas

Process conditions

Fixed power : 400W, Fixed acceleration voltage : 400V

Damage Analysis Etched n-GaN, GaAs

Process conditions

Fixed acceleration voltage : 400V, pure Cl₂, Gas flow rate : 3sccm,

I-V Characteristics of GaN LEDs after Neutral Beam Etching of p-GaN

✓ Condition

- Neutral beam etching : Power 400W / Bias +400V / CF₄ 15sccm / 40min / thickness 600-650Å
- ICP etching : Power 400W / Bias -400V / CF₄ 15sccm / 15sec / thickness 750-800Å

GaN Device Efficiency after Neutral Beam Etching of p-GaN

30/32 SKKU

Commercialization Alpha Version – for 12inch Dia. Silicon Nano Processing

ltem	사양
lon source	- Source type : ICP - Power 3000W - Density : 5.5E+11(4mTorr, 2500W)
Grid & Reflector	Grid Reflector Grid DC Bias QDF - Grid hole size: 2, 3, 4mm - Grid gap: 2, 4, 6mm - Reflector angle: 3, 5, 7° - Chuck & reflector gap: 50, 100, 150mm - Grid material : Graphite
Chuck	- Tilting(Manual, 45°) & Rotating(Automatic, 15RPM) - Lift pin & Mechanical clamp - No Cooling & heating
Chamber & Vacuum system	 Vertical type Chamber pressure : 0.3mTorr with Ar 40sccm TMP 4200l/s Gate valve : ø400, Step motor Operation(Pressure control)
Gas	- Gas box type : IGS(1.25) - Gas line : 14 line

<설비 사양>

- Using a low energy reflection of reactive ion beam, directional reactive neutral beam for chargeless etching was successfully fabricated.
- By using the neutral beam, nanoscale etching of silicon and silicon oxide could be achieved.
- No charging damage was detected by the use of the neutral beam while the conventional ICP etching showed a significant damage such as leakage of gate oxide, RIE-lag, etc.
- It is believed that, neutral beam etching technique is benificial for the nanodevice processing not only for the top-down devices but also for the bottom-up devices

